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The boundary method of Galerkin is used to solve the problem of heat transfer in 
laminar flow with axial conduction. The set of particular solutions used inthis calculation 
consists of the product of exponentially decaying functions (in the positive axial direc- 
tion) and radially dependent confluent hypergeometric functions of Kummer’s type. 
Nusselt functions and temperature profiles are presented and comparison is made with 
respect to the number of terms used in the trial function. The same problem is also 
treated by the method of boundary collocation with subsequent comparisons with the 
boundary method of Gale&in. Computationally, the methods presented here appear to 
offer considerable advantages over previously employed methods such as the interior 
method of Gale&in. 

INTRODUCTION 

The linear, elliptic boundary value problem governing heat transfer in laminar 
flow has been solved approximately by two different methods: finite difference 
techniques [I, 21 and variational methods [3-71. In [l] McMordie and Emery used 
a forward-differencing technique to solve the problem of laminar-flow heat transfer 
with axial conduction and developing velocity profile, while in [2] Hennecke 
employed a central-differencing technique to solve the problem of laminar-flow 
heat transfer with axial conduction, fully developed velocity profile, and adiabatic 
entrance conditions. Millsaps and Pohlhausen [3] and Singh [4] treated the problem 
of constant entrance temperature, fully developed laminar flow, and axial con- 
duction. Employing the interior method of Galerkin, these authors used a trial 
solution of the form 

T(r, z) = ; AT,(r) exp(-Ad, 
n=1 
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where the radially dependent functions T,(r) were expanded as infinite series of 
zero-order Bessel functions with expansion coefficients Bg’. The resulting equations 
for the discrete values assigned to the h, involved determinants of infinite order, 
and the difficulty of computing h, increased considerably as n became larger. 
After each of the first N of the h, were computed, (N - 1) of the corresponding 
expansion coefficients B, w had to be obtained. Finally, after considerable effort, 
a least-squares procedure could be used to obtain the coefficients A, . 

A shorter approach was employed by Hsu [6] who solved for the h, and T,(r) 
directly by the Runge-Kutta method. In his first paper, Hsu used an incorrect 
formula derived by Singh [8] (see also 19, lo]) to compute the expansion coeffi- 
cients A, . In the same paper, he also used an asymptotic relation for T(r, .a) which 
was incompatible with his constant entrance temperature assumption. In his second 
paper, Hsu considered the case of an adiabatic entrance condition [7]. Here, 
although he mistakenly thought of his method as exact, Hsu actually used the 
boundary method of Galerkin to compute the coefficients A,. Furthermore, 
Hsu’s use of the numerically unstable Gram-Schmidt procedure [ 11, 121 to solve 
the equations resulting from the Galerkin method might have led to the incorrect 
values of the A, he obtained for low Peclet numbers. He had to correct these values 
by an iteration procedure. 

The main purpose of the present paper is to present a more efficient procedure 
for the calculation of the h, and T,(r) of the foregoing trial solution and also to 
present results of various variational methods for calculating the expansion 
coefficients A, . This procedure avoids the lengthy interior method of Galerkin by 
utilizing the exact functional form for T,(r); thus, the more direct boundary method 
of Galerkin or the boundary collocation method can be employed to determine 
the A, . A secondary purpose is to present the results obtained for low Peclet 
numbers for the problem of constant entrance temperature, with a compatible 
asymptotic temperature relation. Physically this problem corresponds to a viscous 
liquid entering a cylindrical capillary at low velocity from a well-stirred, constant 
temperature reservoir. Reynolds numbers of approximately unity can result from 
this situation, leading to 99 % of the velocity profile development in less 
than 0.06 capillary diameters [13]. In this case thePeclet number can still be reason- 
ably low (about 10 or 20) even when the Prandtl number is about 10. Thus the 
validity of this model is not restricted to liquid metals. 

THE ENERGY EQUATION 

In addition to assuming instantaneous velocity profile development, constant 
reservoir temperature To , axial and radial conduction, and steady state conditions, 
the particular problem considered here will assume constant tube radius r,, , 
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parabolic flow, constant thermal conductivity k, density and heat capacity, 
negligible heat dissipation by viscous forces, and constant heat flux q through 
the tube wall. The energy equation, derived in the usual manner by performing a 
differential balance of convective and conductive heat fluxes, then reduces to the 
elliptic partial differential equation: 

(1 - (2) a7/a?j = (l/Pe)(a%/al$2 + E-1 &/a[ + a%/87f) (1) 

7 finite at .$ = 0 (4) 

a7/ag = 1, at 5 = 1. (5) 

The dimensionless variables given in Eqs. (l)-(5) are defined by: 

r) = x/r0 . 

Here, r and x are the axial and radial coordinates, respectively, Tis the temperature, 
and Pe denotes Peclet number. 

The complete solution for the dimensionless temperature profile will be of the 
form 

in which e(,, @ decays exponentially with 7, resulting in T(v, 5) - Tj(~, [) for 
large 17. 

ASYMPTOTIC SOLUTION TO ENERGY EQUATION 

The asymptotic solution Tf must satisfy Eqs. (l), (3)-(5) but does not satisfy 
Eq. (2) since 7 + Tj only for large values of 7. Hence, another boundary condition 
is needed to fully determine Tj . We obtain this boundary condition, after [14], by 
performing a heat balance over the tube from x = 0 to x = x’ and then taking 
the limit as x’ -+ co. The result is 

Tj = (4Pe-l) 'I + 5" - 6414 - 7124 - (4Pe-I) 1: pm 5)/q t hf. (7) 
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SOLUTION OF THE FUNCTION 13 

We now obtain the solution 19 which satisfies Eq. (1) and, because of the boundary 
conditions satisfied by Tf and T, must also satisfy certain boundary conditions of its 
own: 0 finite at 5 = 0, 0 -+ 0 as 7 -+ co, dejds = 0 at e = 1, and 

e(o, 5) = -T~(O, 5) = -P + t4/4 + 7/24 + (4/l+) /i aef; *' E 6 (8) 

To find the solution 8 we begin with a procedure used by Walker [15], Passe11 and 
Perry [16], and Hsu [6]. Assume e(q, 5) has the form 

which already satisfies the condition 6’ + 0 as q ---f co. Substituting Eq. (9) into 
Eq. (1) we obtain an ordinary differential equation for R,(n: 

d2R,/df2 + t-l dR,ldt + [$n4/Pez + $n2(1 - 5”)l Rn = 0. 

The solution to this equation which satisfies the boundary condition R,,(O) finite is 

where M(a; b; v) is Kummer’s confluent hypergeometric function [17], and 

a, = 4 - (&3 + Pe2q5,)/4Pe2. (11) 

The discrete values of 4,, required for the necessary boundary condition R,‘(l) = 0 
to be satisfied are obtained as the roots of 

(an + $42) Ma, ; 1; 4,) - adf(1 + a, ; 1; &J = 0. w 

However, since the negative roots of (12) are just the negatives of the positive roots 
and since M5, g&J equals Uf, -d,J U71, we need only determine the positive 
roots of (12). (The 4% depend on the Peclet number only; and the left-hand side of 
Eq. (12) can be tabulated versus a sequence of closely spaced values of I& . Taking 
as first estimates those values of & between which the sign of the left-hand side 
changes, the method of false position was used to get more refined values of (b,, . 
For Pe = 5 and 10 the first 25 values of C#Q, are given in Table I.) 
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TABLE I 

Eigenvalues vm Corresponding to Pe = 5 and 10 

n 

%I 

Pe = 5 Pe = 10 

1 3.5988876 4.3345060 

2 5.2843136 6.7407717 

3 6.5834339 8.6329181 

4 7.6746650 10.229411 

5 8.6323615 11.629107 

6 9.4954903 12.887527 

7 10.287275 14.038978 

8 11.022817 15.106130 

9 11.712565 16.104778 

10 12.364101 17.046403 

11 12.983125 17.939641 

12 13.574053 18.791169 

13 14.140385 19.606272 

14 14.684951 20.389214 

15 15.210078 21.143494 

16 15.717706 21 .a72022 

17 16.209474 22.577251 

18 16.686779 23.261270 

19 17.150825 23.925872 

20 17.602658 24.572615 

21 18.043194 25.202859 

22 18.473238 25.817801 

23 18.893506 26.418498 

24 19.304635 27.005895 

25 19.707196 27.580833 
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In evaluating Kummer’s function M(a; b; x), its defining series [17] is used for 
- 1 < a < 1. For a < - 1, the defining series is used in conjunction with the 
recurrence relation 

(b - a) M(a - 1; b; x) + (2~2 - b + x) M(a; b; x) - aM(a + 1; b; x) = 0. (13) 

Computationally, calculating the 4% and R,(t, +,J in this manner appeared to 
require less than a third of the computer time required in the Runge-Kutta 
procedure used by Hsu [6]. 

To obtain the coefficients C, in Eq. (9), we substitute Eq. (9) into Eq. (8) to get 

2 GRd5) = -<” + 84 + 7124 - 4Pe-2 5 &2Cn i: yR,(y, 4%) dy. (14) 
T&=1 V&=1 

Equation (14) can be rewritten as 

5 G&5) = -4” + f414 + 7124, 
n=1 

(15) 

where 

g,(f) = R,(& &d + 4Pe-2$n2 11 Y&(Y, dJ 4. (16) 

Because we are not dealing with a Sturm-Liouville system, we do not know a simple 
orthogonality relation, if any, to employ in evaluating the C, . Thus, we are forced 
to use other techniques to determine the coefficients C, . 

Two variational techniques, the boundary method of Galerkin and the least- 
squares approximation, both reduce to the system of equations 

$J G&z,, 8,) = Cf, gJ, m = 1, L.., N, 
n=1 

(17) 

where 

A Gaussian elimination method can then be used to obtain the coefficients C, from 
Eq. (17), for a given weighting function w. 

Another approach is to preorthonormalize the functions g&) in Eq. (15) via 
a modsed Gram-Schmidt procedure. (The ordinary Gram-Schmidt ortho- 
gonalization procedure tends to be numerically unstable; the modification used 
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in the computation given in this paper has been devised to give better numerical 
results [12].) The preorthonormalization procedure (see [18] for details) results in a 
system of N linear nonhomogeneous equations which can be represented in matrix 
form as BC = L. The N x N matrix B is upper triagonal; thus the coefficient 
matrix C is easily obtained. 

Hsu [7] used the preorthonormalization approach in the problem of constant 
heat flux to a liquid metal in laminar flow with an adiabatic entrance condition. He 
appeared to have used the ordinary Gram-Schmidt orthonormalization procedure 
which may have led to the computational difficulties he experienced in computing 
the coefficients C, for the lower Peclet numbers. At any rate, the preorthonor- 
malization method of obtaining the C, did not prove advantageous (from a stand- 
point of computer time) to Gaussian elimination. 

Another method that can be used to obtain the coefficients in (15) is the method 
of collocation [ 191. This technique involves forcing the two sides of (15) to be equal 
at a number of points E, , t2 ,..., 5, , resulting in the system of N linear algebraic 
equations: 

i G&&) = -&x2 + h4/4 + 7/24, k = I,..., N. (19) 
?l=l 

TEMPERATURE PROFILE AND NUSSELT NUMBER 

After the C, are obtained, substitution into Eq. (9) yields the approximation to 0. 
The expression for 7 then becomes, when Eqs. (7) and (9) are substituted into 
Eq. (6)> 

~(7, 5) = 4q/Pe + 5” - t2/4 - l/24 + 5 Cne-*2n/PeRn(.$) 
VI=1 

(20) 

Following Hsu [6], the expression for the Nusselt number becomes 

NU = 2 [ 1 l/24 + t C, (R,(l) e-*n’niPe + $ &2 j <Rne-QnanIPe &)]-I. (21) 
n=l 

Superficially, this is the same expression as obtained by Hsu [6], but the coefficients 
C, reported by Hsu are not the same, due to his incorrect asymptotic boundary 
condition. 
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COMPUTATIONAL PROCEDURE 

When using the boundary method of Galerkin to compute the coefficients C, 
of Eq. (15), both Gaussian elimination and the preorthonormalization technique 
(using the modified Gram-Schmidt procedure) were carried out for Pe = 10 and 
N = 21. Double precision arithmetic was utilized throughout the calculations, and 
the two techniques gave identical values of C, to at least ten significant figures. 
The Gaussian elimination technique required 30 % less computer time than the 
preorthonormalization procedure. All integrations involved in the Galerkin method 
were performed with Simpson’s rule using an integration interval of 06 = .Ol. 
Reduction of this interval to 05 = .005 changed the values of the C, from only 
.OOl “/, for C1 up to 2 % for Cs5 . 

The Gaussian elimination method used was a Fortran IV subroutine from the 
APL Computing Center library. This routine utilized double-precision arithmetic 
and complete pivoting, and was designed to report possible loss of significance at 
each elimination step. No such losses were reported for any of the calculations 
reported here. 

The weighting function appearing in Eq. (18) and also used in the preorthonor- 
malization method was arbitrarily chosen to be w(E) = [(l - 5”) since this is the 
natural weighting function for the case of no axial conduction. 

Double precision arithmetic and the Gaussian elimination technique described 
above were also used in the collocation method for determining the C, . 

RESULTS 

A. Boundary Method of Galerkin 

The coefficients of Eq. (15) computed by the boundary method of Galerkin for 
Pe = 10 and N = 4,12,18,21, and 25 are shown in Table II. The lower coeffi- 
cients (corresponding to n < N/2) change slightly as N increases, but the higher 
coefficients change more rapidly. 

Using these coefficients, two quantities were computed: the Nusselt number of 
Eq. (21) and the quantity 

(22) 

The Nusselt numbers (actually the Nusselt functions since they depend on $ are 
shown in Table III for N = 4, 12, l&21, and 25. As can be observed, the conver- 
gence with respect to N is rapid for 7 3 0.2, and twelve terms appear sufficient 
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TABLE II 

Expansion Coefficients Obtained by Method of Galerkin for Pe = 10 

215 

n N=4 N= 12 N= 18 N= 21 N = 25 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0.440341 0.472379 

-0.171434 -0.215712 

0.103028 0.121231 

-0.050039 -0.075292 

0.050339 

-0.035514 

0.025986 

-0.019423 

0.014614 

-0.010868 

0.007734 

-0.004782 

0.472964 

-0.216651 

0.122484 

-0.076825 

0.052136 

-0.037573 

0.028316 

-0.022052 

0.017585 

-0.014261 

0.011695 

-0.009650 

0.007972 

-0.006553 

0.005312 

-0.004216 

0.003177 

-0.002041 

0.473090 

-0.216851 

0.122750 

-0.077149 

0.052511 

-0.037998 

0.028789 

-0.022571 

0.018154 

-0.014882 

0.012372 

-0.010390 

0.008783 

-0.007449 

0.006311 

-0.005361 

0.004525 

-0.003734 

0.002998 

-0.002274 

0.001480 

0.473196 

-0.217021 

0.122976 

-0.077423 

0.052829 

-0.038355 

0.029184 

-0.023004 

0.018624 

-0.015390 

0.012920 

-0.010980 

0.009418 

-0.008134 

0.007052 

-0.006173 

0.005419 

-0.004723 

0.004117 

-0.003582 

0.003126 

-0.002605 

0.002002 

-0.001501 

0.001005 
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TABLE III 

Nusselt Function vs. Number of Terms Used in Galerkin Method for Pe = 10 

NU 

1) N=4 N= 12 N= 18 N = 21 N = 25 

0.0 18.825 15.002 112.760 131.647 157.565 

0.2 7.145 8.474 8.494 8.498 8.502 

0.4 6.007 6.218 6.223 6.224 6.224 

0.6 5.316 5.412 5.414 5.415 5.415 

0.8 4.958 5.010 5.011 5.011 5.011 

1.0 4.149 4.780 4.780 4.781 4.781 

2.0 4.619 4.421 4.421 4.421 4.421 

co 4.364 4.364 4.364 4.364 4.364 

TABLE IV 

Least-Square Parameter Fl vs. Number of Terms Used in Galerkin Method for Pe = 10 

N Fl = 1’ [ 5 C,g, - (t4/4 - 5” + 7/24)]’ &l - I”) di! 
0 n-1 

4 5.101 x 10-5 

12 7.458 x 1O-8 

18 2.293 x 1O-8 

21 0.553 x 10-s 

25 0.217 x 1O-8 
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FIG. 1. Nusselt function obtained by Galerkin method with N = 21 and Pe = 5, 10. 
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FIG. 2. Radial profiles of dimensionless temperatures for various downstream positions; 
Pe = 5, 10. 
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for 0.5 % accuracy over most of the tube. The quantity Fl is given in Table 4 for 
N = 4, 12, 18, 21 and 25. The tube entrance condition, Eq. (15), appears to be 
approximated very well, in the least-squares sense, for N > 12. 

Comparing Tables III and IV, the quantity Fl appears to be a more sensitive 
test for convergence than Nu($, since the negative exponential factors in Eq. (21) 
speed the convergence rate of the latter. 

TABLE V 

Expansion Coefficients Obtained by Regular Collocation Method; Pe = 10 and N = 21 

n (Regular (%ocation) 

1 0.474033 

2 -0.218521 

3 0.124736 

4 -0.079866 

5 0.055250 

6 -0.041604 

I 0.032103 

8 -0.027073 

9 0.021887 

10 -0.020452 

11 0.016240 

12 -0.017547 

13 0.011904 

14 -0.018089 

15 0.003814 

16 -0.033615 

17 -0.026748 

18 0.037682 

19 0.256795 

20 -0.028286 

21 -0.189712 
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The Nusselt function is plotted in Fig. 1 for Pe = 5 and 10 and N = 21. The 
corresponding values of T vs. 5 are plotted for various 7 in Fig. 2. Apparently, the 
profiles approach similarity in shape as 7 increases. 

B. Collocation Method 

For comparison with the Galerkin method, the method of collocation was also 
used to approximate the coefficients C, in Eq. (15) for Pe = 10. Equation (19) was 
used for N = 21 points (6 = 0, .05, 0.10, 0.15, 0.20 ,..., 0.95, 1 .OO); the results are 
given in Table V. 

Although the function 

(23) 

vanishes at the points of collocation, it oscillates between fairly large positive and 
negative values between these points. In Fig. 3 a comparison is made between the 
functions F2 computed by the methods of collocation and Galerkin when N = 21 
and Pe = 10. 

0 08 

0 06 

0.04 

0.02 

FP 0 

L 

I 

0 

FIG. 3. Error of methods of collocation and Gale&in in fitting entrance condition. 
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CONCLUSIONS 

The boundary method of Gale&in offers a computational advantage over the 
interior method of Galerkin since the latter requires solution of N systems of 
nonhomogeneous linear equations with dimension (N - 1) plus another N- 
dimensional system of nonhomogeneous linear equations. The former method 
requires only the solution of a single N-dimensional system of nonhomogeneous 
linear equations. 

Furthermore, calculation of the & and Rn(& , 0 using confluent hypergeometric 
functions requires considerably less computer time than the Runge-Kutta 
procedure. 
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